Wrapper around splines::ns() with default Boundary.knots of c(0, max(time)).
Arguments
- time
Continuous time variable, passed directly to
splines::ns()as the first argument.- df
Degrees of freedom, passed directly to the
dfargument ofsplines::ns().- Boundary.knots
Boundary knots, passed directly to the
Boundary.knotsargument ofsplines::ns(). Defaults toc(0, max(time)).- ...
Passed to
splines::ns().
Value
A matrix of dimension length(time) * df. See the Value section
of splines::ns().
Details
time_spline() is primarily useful because it can create the spline basis
from time and then re-input time into the spline basis to obtain the
predictions in one step. Or, it can calculate predictions from a basis
supplied to the basis argument.
Examples
time_spline_basis(Theoph$Time, df = 3)
#> 1 2 3
#> [1,] 0.000000000 0.00000000 0.00000000
#> [2,] -0.031886120 0.07479893 -0.04282603
#> [3,] -0.070807627 0.16805702 -0.09622083
#> [4,] -0.125964695 0.31293414 -0.17916995
#> [5,] -0.169412675 0.48806315 -0.27927835
#> [6,] -0.115368472 0.64343847 -0.36471168
#> [7,] -0.005439624 0.64376443 -0.35709820
#> [8,] 0.187939184 0.56594061 -0.28713439
#> [9,] 0.336223856 0.48518463 -0.19148429
#> [10,] 0.432921151 0.40296875 -0.02765524
#> [11,] -0.140818100 0.37708366 0.76373230
#> [12,] 0.000000000 0.00000000 0.00000000
#> [13,] -0.034401475 0.08073620 -0.04622541
#> [14,] -0.064955064 0.15378594 -0.08804994
#> [15,] -0.115680778 0.28362245 -0.16238767
#> [16,] -0.167320051 0.47227657 -0.27028435
#> [17,] -0.135633825 0.63136451 -0.35893139
#> [18,] -0.013265008 0.64554696 -0.35878460
#> [19,] 0.187939184 0.56594061 -0.28713439
#> [20,] 0.333419797 0.48691072 -0.19397616
#> [21,] 0.431739620 0.40536423 -0.03443175
#> [22,] -0.135520210 0.37659567 0.75892036
#> [23,] 0.000000000 0.00000000 0.00000000
#> [24,] -0.034401475 0.08073620 -0.04622541
#> [25,] -0.071965460 0.17089459 -0.09784548
#> [26,] -0.117472923 0.28861038 -0.16524350
#> [27,] -0.169412675 0.48806315 -0.27927835
#> [28,] -0.128469570 0.63656288 -0.36151519
#> [29,] -0.007403778 0.64422798 -0.35753255
#> [30,] 0.191599626 0.56411346 -0.28534422
#> [31,] 0.333419797 0.48691072 -0.19397616
#> [32,] 0.433186017 0.40237949 -0.02595674
#> [33,] -0.125686467 0.37569104 0.74998465
#> [34,] 0.000000000 0.00000000 0.00000000
#> [35,] -0.044374820 0.10436966 -0.05975672
#> [36,] -0.074267838 0.17655229 -0.10108478
#> [37,] -0.121816839 0.30090106 -0.17228051
#> [38,] -0.170988539 0.50443930 -0.28859376
#> [39,] -0.135633825 0.63136451 -0.35893139
#> [40,] -0.013265008 0.64554696 -0.35878460
#> [41,] 0.187019320 0.56639890 -0.28758125
#> [42,] 0.334546483 0.48621869 -0.19298014
#> [43,] 0.431523624 0.40576949 -0.03555843
#> [44,] -0.162020769 0.37903913 0.78298164
#> [45,] 0.000000000 0.00000000 0.00000000
#> [46,] -0.038158943 0.08962167 -0.05131277
#> [47,] -0.064955064 0.15378594 -0.08804994
#> [48,] -0.115680778 0.28362245 -0.16238767
#> [49,] -0.169412675 0.48806315 -0.27927835
#> [50,] -0.135633825 0.63136451 -0.35893139
#> [51,] -0.013265008 0.64554696 -0.35878460
#> [52,] 0.187019320 0.56639890 -0.28758125
#> [53,] 0.338985800 0.48347180 -0.18898637
#> [54,] 0.431739620 0.40536423 -0.03443175
#> [55,] -0.139304250 0.37694418 0.76235743
#> [56,] 0.000000000 0.00000000 0.00000000
#> [57,] -0.034401475 0.08073620 -0.04622541
#> [58,] -0.071965460 0.17089459 -0.09784548
#> [59,] -0.128360092 0.32003121 -0.18323322
#> [60,] -0.169587065 0.48959437 -0.28015006
#> [61,] -0.131520539 0.63449736 -0.36050068
#> [62,] -0.015207904 0.64596224 -0.35918470
#> [63,] 0.185173915 0.56731723 -0.28847414
#> [64,] 0.345443447 0.47941486 -0.18296684
#> [65,] 0.432737810 0.40336372 -0.02878661
#> [66,] -0.101522574 0.37347754 0.72799512
#> [67,] 0.000000000 0.00000000 0.00000000
#> [68,] -0.031886120 0.07479893 -0.04282603
#> [69,] -0.062585869 0.14804054 -0.08476042
#> [70,] -0.117472923 0.28861038 -0.16524350
#> [71,] -0.169412675 0.48806315 -0.27927835
#> [72,] -0.136774489 0.63041696 -0.35845070
#> [73,] -0.015207904 0.64596224 -0.35918470
#> [74,] 0.183321049 0.56823778 -0.28936584
#> [75,] 0.333419797 0.48691072 -0.19397616
#> [76,] 0.432255723 0.40435862 -0.03161162
#> [77,] -0.129467769 0.37603869 0.75342133
#> [78,] 0.000000000 0.00000000 0.00000000
#> [79,] -0.031886120 0.07479893 -0.04282603
#> [80,] -0.064955064 0.15378594 -0.08804994
#> [81,] -0.113858263 0.27859466 -0.15950901
#> [82,] -0.169412675 0.48806315 -0.27927835
#> [83,] -0.133893864 0.63274194 -0.35962540
#> [84,] -0.010340372 0.64490104 -0.35816820
#> [85,] 0.198829456 0.56048783 -0.28175081
#> [86,] 0.337333680 0.48449791 -0.19048585
#> [87,] 0.432737810 0.40336372 -0.02878661
#> [88,] -0.121906461 0.37534379 0.74654816
#> [89,] 0.000000000 0.00000000 0.00000000
#> [90,] -0.038158943 0.08962167 -0.05131277
#> [91,] -0.077687049 0.18499373 -0.10591792
#> [92,] -0.120102880 0.29601578 -0.16948345
#> [93,] -0.169412675 0.48806315 -0.27927835
#> [94,] -0.133893864 0.63274194 -0.35962540
#> [95,] -0.013265008 0.64554696 -0.35878460
#> [96,] 0.200617994 0.55958737 -0.28084975
#> [97,] 0.321779716 0.49394857 -0.20388285
#> [98,] 0.426370035 0.41379984 -0.05681476
#> [99,] -0.145360341 0.37750232 0.76785698
#> [100,] 0.000000000 0.00000000 0.00000000
#> [101,] -0.046843101 0.11024514 -0.06312071
#> [102,] -0.093041003 0.22359645 -0.12801985
#> [103,] -0.117472923 0.28861038 -0.16524350
#> [104,] -0.169917035 0.49263118 -0.28187848
#> [105,] -0.132714772 0.63363118 -0.36007016
#> [106,] -0.010340372 0.64490104 -0.35816820
#> [107,] 0.192509988 0.56365816 -0.28489600
#> [108,] 0.353680730 0.47412303 -0.17488729
#> [109,] 0.432737810 0.40336372 -0.02878661
#> [110,] -0.090224045 0.37244888 0.71769159
#> [111,] 0.000000000 0.00000000 0.00000000
#> [112,] -0.031886120 0.07479893 -0.04282603
#> [113,] -0.062585869 0.14804054 -0.08476042
#> [114,] -0.113858263 0.27859466 -0.15950901
#> [115,] -0.168652039 0.48185238 -0.27574137
#> [116,] -0.129701084 0.63575371 -0.36111993
#> [117,] -0.013265008 0.64554696 -0.35878460
#> [118,] 0.187939184 0.56594061 -0.28713439
#> [119,] 0.335107293 0.48587347 -0.19248177
#> [120,] 0.432921151 0.40296875 -0.02765524
#> [121,] -0.118883480 0.37506632 0.74379911
#> [122,] 0.000000000 0.00000000 0.00000000
#> [123,] -0.031886120 0.07479893 -0.04282603
#> [124,] -0.062585869 0.14804054 -0.08476042
#> [125,] -0.115680778 0.28362245 -0.16238767
#> [126,] -0.169045005 0.48497498 -0.27751992
#> [127,] -0.134477691 0.63228862 -0.35939765
#> [128,] -0.008383944 0.64445532 -0.35774656
#> [129,] 0.191599626 0.56411346 -0.28534422
#> [130,] 0.335107293 0.48587347 -0.19248177
#> [131,] 0.432255723 0.40435862 -0.03161162
#> [132,] -0.124174302 0.37555209 0.74861003
#> attr(,"degree")
#> [1] 3
#> attr(,"knots")
#> [1] 1.040000 7.023333
#> attr(,"Boundary.knots")
#> [1] 0.00 24.65
#> attr(,"intercept")
#> [1] FALSE
#> attr(,"class")
#> [1] "ns" "basis" "matrix"