ncs_analysis() returns an object of class splinetrials_analysis: a 32-column
tibble with one row per unique combination of
data[[arm]] and data[[time_scheduled_label]] (see the arguments of
ncs_analysis()).
Columns
arm: values ofdata[[arm]].time: values ofdata[[time_scheduled_label]].n: number of times the combination appears in data.est: mean ofdata[[response]].sd: standard deviation ofdata[[response]].se: standard error ofdata[[response]](i.e.,sd / sqrt(n)).lower: lower bound of confidence interval.upper: upper bound of confidence interval.response_est: estimated marginal mean.response_se: standard error ofresponse_est.response_df: degrees of freedom used for calculating the confidence interval forresponse_est.response_lower: lower bound of confidence interval forresponse_est.response_upper: upper bound of confidence interval forresponse_est.change_est: estimated change from baseline.change_se: standard error ofchange_est.change_df: degrees of freedom used for calculating the confidence interval for and testing the significance ofchange_est.change_lower: lower bound of confidence interval forchange_est.change_upper: upper bound of confidence interval forchange_est.change_test_statistic: test statistic measuring the significance ofchange_est.change_p_value: p-value for the significance ofchange_est.diff_est: treatment effect.diff_se: standard error ofdiff_est.diff_df: degrees of freedom used for calculating the confidence interval for and testing the significance ofdiff_est.diff_lower: lower bound of confidence interval fordiff_est.diff_upper: upper bound of confidence interval fordiff_est.diff_test_statistic: test statistic measuring the significance ofdiff_est.diff_p_value: p-value for the significance ofdiff_est.percent_slowing_est: estimated percent slowing.percent_slowing_lower: lower bound of confidence interval forpercent_slowing_est.percent_slowing_upper: upper bound of confidence interval forpercent_slowing_est.correlation: the covariance structure of the analysis model. This is the same value repeated for each row.optimizer: invariablymmrm+tmbto indicate thatmmrm::mmrm()(which uses theTMBpackage) was used to fit the model.
Optional analysis_model attribute
If ncs_analysis() had return_models = TRUE, then the analysis model, an
mmrm object, will be included as the analysis_model attribute.
See also
The function ncs_analysis(), which produces objects of this
class.